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SUMMARY 

A simple explanation is given of the occurrence of wiggles in the flow field near outflow boundaries. If the 
shallow-water equations are solved numerically spurious solutions with an oscillatory character turn out to 
exist, which can be generated by certain additional numerical boundary conditions on the downstream side: 
The wiggles usually damp quickly with the distance from the boundary. Some ways of handling the 
downstream boundary are given which largely avoid the occurrence of wiggles. 
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PROBLEM 

In numerical solutions of the shallow-water equations, it is often observed that ‘wiggles’ occur in 
the flow pattern near an outflow boundary. This is sometimes attributed to non-linear effects, but a 
simple explanation is lacking. In the present note, a very simplified linear analysis is given which 
explains the principle of the wiggles. 

BOUNDARY CONDITIONS 

From the theory of partial differential equations, it is known that the shallow-water equations 
(with viscosity terms disregarded) require two boundary conditions on an inflow boundary and 
one at o u t f l o ~ . ~ * ~  The latter and one of the inflow conditions will usually be a specified water level 
or normal velocity. The additional inflow condition, physically related to vorticity transport, may 
involve the tangential velocity component. In many numerical methods, special approximations 
are used near the boundaries, which may be interpreted as additional boundary conditions. 

SCHEMATIZATION 

A number of simplifications can be made. As the problems occur both in steady and unsteady flow, 
time dependence is not essential. Also it is observed that the wiggles in the velocity field are not 
accompanied by water-level variations, so that a constant depth can be assumed for the purpose. 
Bottom friction is not essential but it will be taken into account. The remaing equations are then 
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u- + 5- + c,ii(ii2 + ,-2)1’2 = 0 
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where x and y are the horizontal co-ordinates, U and V the corresponding depth-averaged velocities 
and cf a bottom-friction factor. For simplicity, assume that the region is a rectangle, contained 
within 0 < x < L and that the outflow boundary is at x = L. According to the previous section, a 
boundary condition for U can be imposed either at x = 0 or x = L; a condition for 5 is acceptable 
only at x =,O. 
To further simplify the analysis, let us linearize the equations by defining 

(U,V) = ( U ,  V )  + (u, u)  
where u, ti are supposed to be small. The linearized equations then become 

au au 
ax ay 

a U  a u  
ax ay  

u--+ v - + A , u = O  

U-+V-+&u=O 

(3) 

(4) 

with 

and 

Mixed terms due to the friction term have been neglected for simplicity, so that the two equations 
are now uncoupled. Their analytical solutions are 

u(x, y )  = uo ( y - 6 x )  exp ( - a x )  ( 5 )  

and similarly for u. The boundary conditions at upstream or downstream sides (for u) and upstream 
(for u) determine uo and uo. 

NUMERICAL SOLUTION 

Using central differences, equation (3) is approximated as 

and similarly for equation (4). The solution of equation (6) contains contributions of the form 
uk,j = U 1 Y  k j  s (7) 

(8) 

(9) 

where r and s satisfy (for Ax = Ay) 

(Y - r -1 )  + V / U ( s -  s -1)  + 2 p  = 0 

uk,j = (ulr; + u,lk,)sj 

with p = IAx /U.  For each s, there are two possible values for r, so that the solution reads 

in which u1 and u2 are fixed by the boundary conditions. Now assume that a boundary condition is 
applied on the upstream side, such that a slow variation in the y direction is present, i.e. s = exp (iu) 
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with y = KAY small. Assuming p to be small too, we find approximately 

r 1- -l--p-iE, r , = - l - p - i E  (10) 
with E = V / U  sin y. Now, the first part of this corresponds to the required solution (5):  

r:si = (1 - p - iE)keiiq x exp - -x + iy j - - k i : . (  31 
The second solution r2 is parasitic and it has an oscillatory character, with an amplitude increase in 
the positive x direction. The amplification factor of the amplitude per grid interval exceeds (1 + p). 

TREATMENT OF OUTFLOW BOUNDARY 

Some typical ways of handling the outflow boundary x, = L will be discussed. Other methods can 
be analysed the same way. It is noted that the behaviour of u and IJ at the outflow boundary is 
completely similar; therefore, only the u component is discussed. 

(i) (au/ax) = 0 approximated by u , , ~  = u,- 1 ,  j. Together with a boundary condition on the inflow 
side, this gives two conditions for u1 and u2: 

or 
u2 = - ul(r; - r;- ' ) / ( r ;  - r;- I )  

This gives approximately 

u2 x ( -  1ygp + iE)U, (13) 

which will be small of first order O(Ax, Ay). The component with ul will then approximately give 
the correct solution. 

= u,- l , j ,  where n + 1 is a virtual point outside the 
region. In this case equation (12) will be replaced by 

(ii) (&/ax) I= 0 approximated by u,+ 

and consequently 

The parasitic solution turns out to be of the same order as the physical one and errors up to 100 per 
cent are obtained. 

= 0. Equation ( 1  2)  is now replaced 
by 

leading to 

(iii) (a2u/dx2)  = 0 approximated by u,+ 1, - 2u,, + u, - 

ul(r;" - 2 4  + 6-l) + u 2 ( 6 + l  - 2r; + 6-l) = 0 (16) 

E 2  

4 
u2 x ( - l)"--U, 

which is of order O(Ay2) and, therefore, more accurate than case (i). A similar result, not shown here, 
is obtained by using the equations at the boundary x, = L, with one-sided differences for the x- 
derivatives. Again, a second-order contribution for u2 is found, and, therefore, a second-order 
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DUCHESS 

accurate main component ul .  This agrees with the resuit by Gustafsson’ that a boundary 
treatment one order less accurate than internal points will not decrease the overall order of 
convergence. 

TIHE 10800 S E C  
c---11000 n 

NUMERICAL VERIFICATION 

To illustrate the effect of various outflow boundary conditions, some numerical examples were 
generated using the DUCHESS program of the Delft University of Technology. A simple square 
basin of 10 x 10 km2 was taken, with a water depth of 30m and an inflow velocity of 1 m/s. The side 
walls were closed. In order to have a cross-flow component at the outflow section, the water level at 
outflow was tilted by 0.1 m across the basin. Some further data: 

bottom friction coefficient: cf = 0.004 
grid size: 
time step: At = 180s 
total simulated time: 

Ax = Ay = 500m 

t = 18,000s 

The standard version of the program uses method (i) at  the outflow section. As a comparison, the 
same run was made with method (ii) of the preceding section. The results are shown in Figure 1 at 
time 18000s; the flow is then about steady. 

In the standard case, almost no wiggles are observed; the numerical output, however, shows 
some small amplitude oscillations in the u component. In the case ofmethod (ii), very strong wiggles 
occur in global agreement with the theory. A quantitative comparison is not so easy to make; the 
growth rate of the u component is found to be about - 1.5 per grid interval, whereas the theory 
would yield u2 z - 3. However, it should be realized that the theory applies to small disturbances 
and the numerical examples to very strong ones. Generally speaking, the conclusions of 
the theoretical analysis are supported. 

3UCHESS 
d I C C L E  STUOY 

T I N E  18000 S E C  
t-----4lOOO n 
c 1.00 n/s UICGLE STUDY I C 1.00 W/S 

Figure 1 .  Computed steady-state flow pattern. Outflow boundary treated by method (i) (left) and by method (ii) (right). 
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DISCUSSION AND CONCLUSION 

A simple explanation has been given of wiggles in the velocity field near the outflow boundary for 
the shallow-water equations. The occurrence of wiggles turns out to be perfectly explicable by 
linear theory, and is related with the specification of additional, numerical boundary conditions. 
Good methods to avoid the greater part of the wiggles are simple first-order extrapolation (over 
one mesh interval!), second-order extrapolation, or using the differential equations approximated 
by one-sided differences in the direction normal to the boundary. The theory applies to staggered 
grids as well. 

In some cases, similar wiggles are observed upstream of obstacles (islands) in the flow. The 
present theory does not apply there, as there is no outflow at such boundaries. Therefore, such 
internal wiggles and ways to avoid them require a more sophisticated theory. 
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